
Yale University

Department of Computer Science

Fast Dimension Reduction Using Rademacher Series
on Dual BCH Codes

Nir Ailon1 Edo Liberty2

YALEU/DCS/TR-1385
July 2007

1Institute for Advanced Study, Princeton NJ
2Yale University, New Haven CT, supported by AFOSR and NGA

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
Fast Dimension Reduction Using Rademacher Series on Dual BCH Codes

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Yale University,Department of Computer Science,PO Box 208285,New
Haven,CT,06520-8285

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Fast Johnson-Lindenstrauss Transform (FJLT) was recently discovered by Ailon and Chazelle as a
novel technique for performing fast dimension reduction with small distortion from ‘d 2 to ‘k 2 in time
O(maxfd log d; k3g). For k in [?(log d);O(d1=2)] this beats time O(dk) achieved by naive multiplication by
random dense matrices, an approach followed by several authors as a variant of the seminal result by
Johnson and Lindenstrauss (JL) from the mid 80’s. In this work we show how to signi?cantly improve the
running time to O(d log k) for k = O(d1=2??), for any arbitrary small ?xed ?. This beats the better of FJLT
and JL. Our analysis uses a powerful measure concentration bound due to Talagrand applied to
Rademacher series in Banach spaces (sums of vectors in Banach spaces with random signs). The set of
vectors used is a real embedding of dual BCH code vectors over GF(2). We also discuss the number of
random bits used and reduction to ‘1 space. The connection between geometry and discrete coding theory
discussed here is interesting in its own right and may be useful in other algorithmic applications as well.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

The Fast Johnson-Lindenstrauss Transform (FJLT) was recently discovered by Ailon and
Chazelle as a novel technique for performing fast dimension reduction with small distortion
from `d

2 to `k
2 in time O(max{d log d, k3}). For k in [Ω(log d), O(d1/2)] this beats time O(dk)

achieved by naive multiplication by random dense matrices, an approach followed by several
authors as a variant of the seminal result by Johnson and Lindenstrauss (JL) from the mid
80’s. In this work we show how to significantly improve the running time to O(d log k) for
k = O(d1/2−δ), for any arbitrary small fixed δ. This beats the better of FJLT and JL. Our
analysis uses a powerful measure concentration bound due to Talagrand applied to Rademacher
series in Banach spaces (sums of vectors in Banach spaces with random signs). The set of vectors
used is a real embedding of dual BCH code vectors over GF (2). We also discuss the number of
random bits used and reduction to `1 space.

The connection between geometry and discrete coding theory discussed here is interesting
in its own right and may be useful in other algorithmic applications as well.

1 Introduction

Applying random matrices is by now a well known technique for reducing dimensionality of vectors
in Euclidean space while preserving certain properties (most notably distance information). Begin-
ning with the classic work of Johnson and Lindenstrauss [16] who used projections onto random
subspaces, other variants of the technique using different distributions are known [1, 9, 15, 22] and
have been used in many algorithms [18, 20, 3, 13, 26, 24, 11].

In all the variants of this idea, a fixed unit length vector x ∈ Rd is mapped onto Rk (k < d)
via a random linear mapping Φ from a carefully chosen distribution. A measure concentration
principle is used to show that the distribution of the norm estimator error |‖Φx‖2 − 1| in a small
neighborhood of 0 is dominated by a gaussian of standard deviation Ω(k−1/2), uniformly for all x
and independent on d. The distribution of Φ need not even be rotationally invariant. When used
in an algorithm, k is often chosen as O(ε−2 log n) so that a union bound ensures that the error is
smaller than a fixed ε simultaneously for all n vectors in some fixed input set. Noga Alon proved
[2] that this choice of k is essentially optimal and cannot be significantly reduced.

It makes sense to abstract the definition of a distribution of mappings that can be used for dimen-
sion reduction in the above sense. We will say that such a mapping has the Johnson-Lindenstrauss
property (JLP), named after the authors of the first such construction (we make an exact definition
of this property in Section 2). In view of Ailon and Chazelle’s FJLT result [1], it is natural to ask
about the computational complexity of applying a mapping drawn from a JLP distribution on a
vector. The resources considered here are time and randomness. Ailon et al showed that reduction
from d dimensions to k dimensions can be performed in time O(max{d log d}, k3), beating the näıve
O(kd) time implementation of JL for k in ω(log d) and o(d1/2). Similar bounds were found in [1]
for reducing onto `1 (Manhattan) space, but with quadratic (not cubic) dependence on k. From
recent work by Matousek [22] it can be shown, by replacing gaussian distributions with ±1’s, that
Ailon and Chazelle’s algorithm for the Euclidean case requires O(max{d, k3}) random bits in the
Euclidean case.

1.1 Our Results

This work contains several contributions. We summarize them for the Euclidean case in Table 1.1
for convenience. The first (in Section 7) is a simple trick that can be used to reduce the running

1

time of FJLT [1] to O(max{d log k}, k3), hence making it better than the näıve algorithm for small
k (first column in the table). In typical applications, the running time translates to O(d log log n),
where n is the number of points we simultaneously want to reduce (assuming n = 2O(d1/3)).

k in o(log d)
k in ω(log d)

and o(poly(d))
k in Ω(poly(d))

and o((d log d)1/3)
k in ω((d log d)1/3)

and O(d1/2−δ)

Fast This work This work This work, FJLT This work
JL FJLT FJLT

Slow FJLT JL JL JL

Table 1: Schematic comparison of asymptotical running time of this work, Ailon and Chazelle’s
work [1] (FJLT) and a näıve implementation of Johnson-Lindenstrauss (JL), or variants thereof.

The main contribution (Sections 5-6) is improving the case of ”large k” (rightmost column in the
Table 1.1). We need tools from the theory of probability and norm interpolation in Banach spaces
(Section 3) as well as the theory of error correcting codes (Section 4) to construct a distribution
on matrices satisfying JLP that can be applied in time O(d log d) (note that in this case log d =
O(log k)). The ideas used in our constructions are interesting in their own right, because they take
advantage of advanced ideas from different classic theories. These ideas provide a new algorithmic
application of error correcting codes, an extremely useful tool in theoretical computer science with
applications in both complexity and algorithms (a good overview can be found here [25], a more
recent example here [17]).

A note on ”large k”: As stated above, k is typically O(ε−2 log n), where ε is a desired distortion
bound and n is the number of vectors we wish to reduce. Although log n is typically small (loga-
rithmic in the input size), in various applications, especially in scientific computation, ε−2 may be
large. This case is therefore important to study.

It is illustrative to point out an apparent weakness in [1] which was a starting point of our
work. The main tool used there is to multiply the input vector x by a random sign change matrix
followed by a Fourier transform, resulting in a vector y. It is claimed that ‖y‖∞ is small (in other
words, the ”information” is spread out evenly among the coordinates). By a convexity argument
the ”worst case” y assuming only the `∞ bound is a uniformly supported vector, namely, a vector
in which the absolute value of the coordinates in its (small) support are all equal. Intuitively, such
a vector is extremely unlikely. In this work we consider other norms.

It is likely that the techniques we develop here can be used in conjunction with very recent
research on explicit embeddings of `2 in `1 [23, 14, 4] as well as research on fast approximate linear
algebraic scientific computation [24, 10, 6, 7, 8, 27].

2 Preliminaries

We use `d
p to denote d dimensional real space equipped with the norm ‖x‖ = ‖x‖p =

(∑d
i=1 |xi|p

)1/p
,

where 1 ≤ p < ∞ and ‖x‖∞ = max{|xi|}. The dual norm index q is defined by the solution to
1/q + 1/p = 1. We remind the reader that ‖x‖p = sup y∈`d

q
‖y‖=1

xT y . For a real k × d matrix A, the

2

matrix norm ‖A‖p1→p is defined as the operator norm of A : `d
p1
→ `k

p or:

‖A‖p1→p = sup
x∈`d

p1
‖x‖=1

‖Ax‖p = sup
y∈`k

q
‖y‖=1

sup
x∈`d

p1
‖x‖=1

yT Ax .

In what follows we use d to denote the original dimension and k < d the target (reduced)
dimension. The input vector will be x = (x1, . . . , xd)T ∈ `d

2. Since we only consider linear reductions
we will assume without loss of generality that ‖x‖2 = 1.

Definition 2.1 A family of distributions D(d, k) on k × d real matrices (k ≤ d) has the Johnson-
Lindenstrauss property (JLP) with respect to a norm index p if for any unit vector x ∈ `d

2 and
0 ≤ ε < 1/2,

Pr
A∈Dd,k

[1− ε ≤ ‖Ax‖p ≤ 1 + ε] ≥ 1− c1e
−c2kε2

(1)

for some global c1, c2 > 0.

(A similar definition was given in [24].) In this work, we study the cases p = 1 (Manhattan JLP)
and p = 2 (Euclidean JLP). We make a few technical remarks about Definition 2.1:

• For most dimension reduction applications k = Ω(ε−2), so the constant c1 can be ”swallowed”
by c2, but we prefer to keep it here to avoid writing O(e−Ω(kε2)) and for generality.

• The definition is robust with respect to bias of O(k−1/2). More precisely, if we prove Pr[µ−ε ≤
‖Ax‖p ≤ µ + ε] ≥ 1 − c1e

−c2kε2
for some µ satisfying |µ − 1| = O(k−1/2), then this would

imply (1), with possibly different constants. We will use this observation in what follows.

Recall that the Walsh-Hadamard matrix Hd is a d × d orthogonal matrix with Hd(i, j) =
2−d/2(−1)〈i,j〉 for all i, j ∈ [0, d−1], where 〈i, j〉 is dot product (over F2) of i, j viewed as (log d)-bit
vectors. The matrix encodes the Fourier transform over the binary hypercube. It is well known
that x 7→ Hdx ∈ `d

2 can be computed in time O(d log d) for any x ∈ `d
2, and that the mapping is

isomorphic.

Definition 2.2 A matrix A ∈ Rm×d is a code matrix if every row of A is equal to some row of H
multiplied by

√
d/m.

The normalization is chosen so that columns have Euclidean norm 1.

2.1 Statement of our Theorems

The main contribution is in Theorem 2.4 below.

Theorem 2.3 For any code matrix A of size k×d for k < d, the mapping x 7→ Ax can be computed
in time O(d log k).

Clearly this theorem is interesting only for log k = o(log d), because otherwise the Walsh-Hadamard
transform followed by projection onto a subset of the coordinates can do this in time O(d log d),
by definition of a code matrix. As a simple corollary, the running time of the algorithms in [1] can
be reduced to O(max{d log k, k3}), because effectively what they do is multiply the input x (after

3

random sign change) by a code matrix of size O(k3)× d and then manipulate the outcome in time
O(k3). This gives the left column of Table 1.1. We omit the details of this result and refer the
reader to [1, 22].

Theorem 2.4 Let δ > 0 be some arbitrarily small constant. For any d, k satisfying k ≤ d1/2−δ

there exists an algorithm constructing a random matrix A of size k × d satisfying JLP, such that
the time to compute x 7→ Ax for any x ∈ Rd is O(d log k). The construction uses O(d) random
bits and applies to both the Euclidean and the Manhattan cases.

We will prove a slightly weaker running time of O(d log d) below, and provide a sketch for
reducting it to O(d log k), where the full details or the improvement are deferred to Appendix A.
This improvement is interesting for small k, and provides a unified solution for all k ≤ d1/2−δ,
though the small k case can also be be taken care using Theorem 2.3 above in conjunction with
FJLT [1]. The main contribution of theorem 2.3, of course, is in getting rid of the term k3 in the
running time of FJLT.

3 Tools from Banach Spaces

The following is known as an interpolation theorem in the theory of Banach spaces. For a proof,
refer to [5].

Theorem 3.1 [Riesz-Thorin] Let A be an m × d real matrix, and assume ‖A‖p1→r1 ≤ C1 and
‖A‖p2→r2 ≤ C2 for some norm indices p1, r1, p2, r2. Let λ be a real number in the interval [0, 1],
and let p, r be such that 1/p = λ(1/p1) + (1 − λ)(1/p2) and 1/r = λ(1/r1) + (1 − λ)(1/r2). Then
‖A‖p→r ≤ Cλ

1 C1−λ
2 .

Theorem 3.2 [Hausdorff-Young] For norm index 1 ≤ p ≤ 2, ‖H‖p→q ≤ d−1/p+1/2, where q is
the dual norm index of p.

(The theorem is usually stated with respect to the Fourier operator for functions on the real line
or on the circle, and is a simple application of Riesz-Thorin by noticing that ‖H‖2→2 = 1 and
‖H‖1→∞ = d−1/2.)

Let M be a real matrix m×d matrix, and let z ∈ Rd be a random vector with each zi distributed
uniformly and independently over {±1}. The random vector Mz ∈ `m

p is known as a Rademacher
random variable. A nice exposition of concentration bounds for Rademacher variables is provided
in Chapter 4.7 of [19] for more general Banach spaces. For our purposes, it suffices to review the
result for finite dimensional `p space. Consider the norm Z = ‖Mz‖p (we say that ”Z is the norm
of a Rademacher random variable in `d

p corresponding to M”). We associate two numbers with Z,

• The deviation σ, defined as ‖M‖2→p, and

• a median µ of Z.

Theorem 3.3 For any t ≥ 0, Pr[|Z − µ| > t] ≤ 4e−t2/(8σ2) .

The theorem is a simple consequence of a powerful theorem of Talagrand (Chapter 1, [19])
on measure concentration of functions on {−1,+1}d extendable to convex functions on `d

2 with
bounded Lipschitz norm.

4

4 Tools from Error Correcting Codes

Let A be a code matrix, as defined above. The columns of A can be viewed as vectors over F2 under
the usual transformation ((+) → 0, (−) → 1). Clearly, the set of vectors thus obtained are closed
under addition, and hence constitute a linear subspace of Fm

2 . Conversely, any linear subspace V of
Fm

2 of dimension ν can be encoded as an m×2ν code matrix (by choosing some ordered basis of V).
We will borrow well known constructions of subspaces from coding theory, hence the terminology.
Incidentally, note that Hd encodes the Hadamard code, equivalent to a dual BCH code of designed
distance 3.

Definition A code matrix A of size m×d is a-wise independent if for each 1 ≤ i1 < i2 < . . . < ia ≤
m and (b1, b2, . . . , ba) ∈ {+1,−1}a, the number of columns A(j) for which (A(j)

i1
, A

(j)
i2

, . . . , A
(j)
ia

) =
m−1/2(b1, b2, . . . , ba) is exactly d/2a.

Lemma 4.1 There exists a 4-wise independent code matrix of size k×fBCH(k) , where fBCH(k) =
Θ(k2).

The family of matrices is known as binary dual BCH codes of designed distance 5. Details of the
construction can be found in [21].

5 Reducing to Euclidean Space for k ≤ d1/2−δ

Assume δ > 0 is some arbitrarily small constant. Let B be a k × d matrix with Euclidean unit
length columns, and D a random {±1} diagonal matrix. Let Y = ‖BDx‖2. Our goal is to get a
concentration bound of Y around 1. Notice that E[Y 2] = 1. In order to use Theorem 3.3, we let
M denote the k × d matrix with the i’th column M (i) being xiB

(i), where B(i) denotes the i’th
column of B. Clearly Y is the norm of a Rademacher random variable in `k

2 corresponding to M .
We estimate the deviation σ and median µ, as defined in Section 3.

σ = ‖M‖2→2 = sup
y∈`k

2
‖y‖=1

‖yT M‖2

= sup

(
d∑

i=1

x2
i (y

T B(i))2
)1/2

≤ ‖x‖4 sup

(
d∑

i=1

(yT B(i))4
)1/4

= ‖x‖4‖BT ‖2→4 .

(2)

(The inequality is Cauchy-Schwartz.) To estimate the median µ, we compute

E[(Z − µ)2] =
∫ ∞

0
Pr[(Z − µ)2] > s]ds ≤

∫ ∞

0
4e−s/(8σ2)ds = 32σ2 .

The inequality is an application of theorem 3.3. Recall that E[Z2] = 1. Also, E[Z] = E[
√

Z2] ≤√
E[Z2] = 1 (by Jensen). Hence E[(Z − µ)2] = E[Z2] − 2µE[Z] + µ2 ≥ 1 − 2µ + µ2 = (1 − µ)2.

Combining, |1− µ| ≤ √
32σ. We conclude,

5

Corollary 5.1 For any t ≥ 0,

Pr[|Z − 1| > t] ≤ c3 exp{−c4t
2/(‖x‖2

4‖BT ‖2
2→4)} ,

for some global c3, c4 > 0.

In order for the distribution of BD to satisfy JLP, we need to have σ = O(k−1/2). This
requires controlling both ‖BT ‖2→4 and ‖x‖4. We first show how to design a matrix B that is both
efficiently computable and has a small norm. The latter quantity is adversarial and cannot be
directly contolled, but we are allowed to manipulate x by applying a (random) orthogonal matrix
Φ without losing any information.

5.1 Bounding ‖BT‖2→4 Using BCH Codes

Lemma 5.2 Assume B is a k×d 4-wise independent code matrix. Then ‖BT ‖2→4 ≤ (3d)1/4k−1/2.

Proof For y ∈ `k
2, ‖y‖ = 1,

‖yT B‖4
4 = dEj∈[d][(y

T B(j))4]

= dk−2
k∑

i1,i2,i3,i4=1

Eb1,b2,b3,b4 [yi1yi2yi3yi4b1b2b3b4]

= dk−2(3‖y‖4
2 − 2‖y‖4

4) ≤ 3dk−2 ,

(3)

where b1, b2, b3, b4 are random {+1,−1} variables. We now use the BCH codes. Let Bk denote the
k×fBCH(k) matrix from the Lemma 4.1 (we assume here that k = 2a−1 for some integer a; This is
harmless because otherwise we can reduce onto some k′ = 2a−1 such that k/2 ≤ k′ ≤ k and pad the
output with k−k′ zeros). In order to construct a matrix B of size k×d for k ≤ d1/2−δ, we first make
sure that d is divisible by fBCH(k) (by at most multiplying d by a constant factor and padding
with zeros), and then define B to be d/fBCH(k) copies of Bk side by side. Clearly B remains
4-wise independent. Note that B may no longer be a code matrix, but x 7→ Bx is computable in
time O(d log k) by performing d/fBCH(k) Walsh transforms on blocks of size fBCH(k).

5.2 Controlling ‖x‖4 for k < d1/2−δ

We define a randomized orthogonal transformation Φ that is computable in O(d log d) time and
succeeds with probability 1 − O(e−k) for all k < d1/2−δ. Success means that ‖Φx‖4 = O(d−1/4).
(Note: Both big-O’s hide factors depending on δ). Note that this construction gives a running time
of O(d log d). We discuss later how to do this for arbitrarily small k with running time O(d log k).

The basic building block is the product HD′, where H = Hd is the Walsh-Hadamard matrix
and D′ is a diagonal matrix with random i.i.d. uniform {±1} on the diagonal. Note that this
random transormation was the main ingredient in [1]. Let H(i) denote the i’th column of H.

We are interested in the random variable X = ‖HD′x‖4. We define M as the d × d matrix
with the i’th column M (i) being xiH

(i), we let p = 4 (q = 4/3), and notice that X is the norm of
the Rademacher random variable in `d

4 corresponding to M (using the notation of Section 3). We

6

compute the deviation σ,

σ = ‖M‖2→4 = ‖MT ‖4/3→2

= sup
y∈`k

4/3
‖y‖4/3=1

(∑

i

x2
i (y

T H(i))2
)1/2

≤
(∑

x4
i

)1/4
sup

(∑

i

(yT H(i))4
)1/4

= ‖x‖4‖HT ‖ 4
3
→4 .

(4)

(Note that HT = H.) By the Hausdorff-Young theorem, ‖H‖ 4
3
→4 ≤ d−1/4. Hence, σ ≤ ‖x‖4d

−1/4.
We now get by Theorem 3.3 that for all t ≥ 0,

Pr[|‖HD′x‖4 − µ| > t] ≤ 4e−t2/(8‖x‖24d−1/2) , (5)

where µ is a median of X.

Claim 5.3 µ = O(d−1/4) .

Proof To see the claim, notice that for each separate coordinate E[(HD′x)4i] = O(d−2) and then
use linearity of expectation to get E[‖HD′x‖4

4] = O(d−1). By Jensen inequality, E[‖HD′x‖b
4] ≤

E[‖HD′x‖4
4]

b/4 = O(d−b/4) for b = 1, 2, 3. Now

E[(‖HD′x‖4 − µ)4] =
∫ ∞

0
Pr[(‖HD′x‖4 − µ)4 > s]ds ≤

∫ ∞

0
4e−s1/2/(8‖x‖24d−1/2)ds

= O(d−1) .

This implies that γ1d
−1 − γ2d

−3/4µ + γ3d
−2/4µ2 − γ4d

−1/4µ3 + µ4 ≤ γ5d
−1, where γi is a global

constant for i = 1, 2, 3, 4, 5. Clearly this implies the statement of the claim.

Let c9 be such that µ4 ≤ c9d
−1/4. We weaken inequality (5) using the last claim to obtain the

following convenient form:

Pr[‖HD′x‖4 > c9d
−1/4 + t] ≤ 4e−t2/(8‖x‖24d−1/2) . (6)

In order to get a desired failure probability of O(e−k) set t = c8k
1/2‖x‖4d

−1/4. For k < d1/2−δ

this gives t < c8d
−δ/2‖x‖4. In other words, with probability 1−O(e−k) we get

‖HD′x‖4 ≤ c9d
−1/4 + c8d

−δ/2‖x‖4 .

Now compose this r times: Take independent random diagonal {±1}matrices D′ = D(1), D(2), . . . , D(r)

and define Φ(r)
d = HD(r)HD(r−1) · · ·HD(1). Using a union bound on the conditional failure prob-

abilities, we easily get:

Lemma 5.4 [`4 reduction for k < d1/2−δ] With probability 1−O(e−k)

‖Φ(r)x‖4 = O(d−1/4) (7)

for r = d1/2δe.

7

Note that the constant hiding in the bound (7) is exponential in 1/δ.
Combining the above, the random transformation A = BDΦ(r) has Euclidean JLP for k <

d1/2−δ, and can be applied to a vector in time O(d log d). This proves the Euclidean case of
Theorem 2.4.

5.3 Reducing the Running Time to O(d log k)

We explain how to reduce the running time to O(d log k), using the new tools developed here. This
provides a unified solution to the problem of designing efficient Johnson-Lindenstrauss projections
for all k up to d1/2−δ. Recall that in the construction of B we placed d/fBCH(k) copies of the same
code matrix Bk of size k×fBCH(k) side by side. It turns out that we can apply this ”decomposition”
of coordinates to Φ(r). Indeed, let Ij ⊆ [d] denote the j’th block of β = fBCH(k)kδ consecutive
coordinates (assume that β is an integer that divides d). For a vector y ∈ `d

p, let yIj ∈ `β
p denote the

projection of y onto the set of coordinates Ij . Now, instead of using Φ(r) = Φ(r)
d as above, we use a

block-diagonal d× d matrix comprised of d/β β × β blocks each drawn from the same distribution
as Φ(r)

β . Clearly the running time of the block-diagonal matrix is O(d log k), by applying the Walsh
transform independently on each block (recall that β = fBCH(k)kδ = O(k2+δ)).

In order to see why this still works, one needs to repeat the above proofs using a family of norms

‖ · ‖(p1,p2) indexed by two norm indices p1, p2 and defined as ‖x‖(p1,p2) =
(∑d/β

j=1 ‖xIj‖p2
p1

)1/p2

. We
discuss this in detail in Appendix A.

6 Reducing to Manhattan Space for k < d1/2−δ

We sketch this simpler case. As we did for the Euclidean case, we start by studying the random
variable W ∈ `k

1 defined as W = ‖k1/2BDx‖1 for B as described in Section 5 and D a random
±1-diagonal matrix. In order to characterize the concentration of W (the norm of a Rademacher
r.v. in `k

1) we compute the deviation σ, and estimate a median µ. As before, we set M to be the
k × d matrix with the i’th column being k1/2B(i)xi.

σ = sup
y∈`k∞
‖y‖=1

‖yT M‖2 = sup

(
k

d∑

i=1

x2
i (y

T B(i))2
)1/2

≤ sup k1/2‖x‖4‖yT B(i)‖4 = k1/2‖x‖4‖BT ‖∞→4

(8)

Using the tools developed in the Euclidean case, we can reduce ‖x‖4 to O(d−1/4) with probability
1−O(e−k) using Φr(d), in time O(d log d) (in fact, O(d log k) using the improvement from Appen-
dex A). Also we already know from Section 5.1 that ‖BT ‖2→4 = O(d1/4k−1/2) if B is comprised
of k × fBCH(k) dual BCH codes (of designed distance 5) matrices side by side (assume fBCH(k)
divides d). Since ‖y‖∞ ≥ k−1/2‖y‖2 for any y ∈ `k, we conclude that ‖BT ‖∞→4 = O(d1/4).
Combining, we get σ = O(k1/2). We now estimate the median µ of W .

In order to calculate µ we first calculate E(W) = kE[|P |] where P is any single coordinate of
k1/2BDx. We follow (almost exactly) a proof by Matousek in [22] where he uses a quantitative
version of the Central Limit Theorem by König, Schütt, and Tomczak [12].

8

Lemma 6.1 [König-Schütt-Tomczak] Let z1 . . . zd be independent symmetric random variables
with

∑d
i=1 E[z2

i] = 1, let F (t) = Pr[
∑d

i=1 zi < t], and let ϕ(t) = 1
2π

∫ t
−∞ e−x2/2dx. Then

|F (t)− ϕ(t)| ≤ C

1 + |t|3
d∑

i=1

E[|zi|3]

for all t ∈ R and some constant C.

Clearly we can write P =
∑d

i=1 zi where zi = D′
ixi and each D′

i is a random ±1. Note that∑d
i=1 E[|zi|3] = ‖x‖3

3. Let β be the constant
∫∞
−∞ |t|dϕ(t) (the expectation of the absolute value of

a Gaussian).

|E[|P |]− β| =
∣∣∣∣
∫ ∞

−∞
|t|dF (t)−

∫ ∞

−∞
|t|dϕ(t)

∣∣∣∣

≤
∫ ∞

−∞
|F (t)− ϕ(t)| dt

≤ ‖x‖3
3

∫ ∞

−∞

C

1 + |t|3 dt .

We claim that ‖x‖3
3 = O(k−1). To see this, recall that ‖x‖2 = 1, ‖x‖4 = O(d−1/4). Equiva-

lently, ‖xT ‖2→2 = 1 and ‖xT ‖4/3→2 = O(d−1/4). By applying Riesz-Thorin, we get that ‖x‖3 =
‖xT ‖3/2→2 = O(d−1/6), hence ‖x‖3

3 = O(d−1/2). Since k = O(d1/2) the claim is proved.
By Linearity of expectation we get E(W) = kβ(1 ± O(k−1)). We now bound the distance of

the median from the expected value.

|E(W)− µ| ≤ E[|W − µ|]
=

∫ ∞

0
Pr[|W − µ| > t]dt

≤
∫ ∞

0
4e−t2/(8σ2)dt = O(k1/2)

(we used our estimate σ = O(k1/2) above.) We conclude that µ = kβ(1 + O(k−1/2)). This clearly
shows that (up to normalization) the random transformation BDΦ(r) (where r = d1/δe) has the
JL property with respect to embedding into Manhattan space. The running time is O(d log d).

7 Trimmed Walsh-Hadamard transform

We prove Theorem 2.3. For simplicity, let H = Hd. It is well known that computing the Walsh-
Hadamard transform Hx requires O(d log d) operations. It turns out that it is possible to compute
PHx with O(d log k) operation, as long as the matrix P contains at most k nonzeros. This will
imply Theorem 2.3, because code matrices of size k × d are a product of PHd, where P contains
k rows with exactly one nonzero in each row. To see this we remind the reader sthat the Walsh-
Hadamard matrix (up to normalization) can be recursively described as

H1 =
(

1 1
1 −1

)
(9)

Hq = H1 ⊗Hq/2 (10)

9

Where ⊗ is the Kronecker product.
We define x1 and x2 to be the first and second halves of x. Similarly, we define P1 and P2 as

the left and right halves of P respectively.

PHqx =
(

P1 P2

) (
Hq/2 Hq/2

Hq/2 −Hq/2

)(
x1

x2

)
= P1Hq/2(x1 + x2) + P2Hq/2(x1 − x2) (11)

P1 and P2 contain k1 and k2 nonzeros respectively, k1 + k2 = k, giving the recurrence relation
T (d, k) = T (d/2, k1) + T (d/2, k2) + d for the running time. The base cases are T (d, 0) = 0 and
T (d, 1) = d. We use induction to show that T (d, k) ≤ 2d log(k + 1).

T (d, k) = T (d/2, k1) + T (d/2, k2) + d

≤ d log(2(k1 + 1)(k2 + 1))
≤ d log((k1 + k2 + 1)2) for any k1 + k2 = k ≥ 1
≤ 2d log(k + 1)

The last sequence of inequalities together with the base cases clearly also give an algorithm and
prove Theorem 2.3.

Since in [1] both Hadamard and Fourier transforms were considered we shortly describe also
a simple trimmed fourier transform. In order to compute k coefficients from a d dimensional
fourier transform on a vector x, we divide x into L blocks of size d/L and begin with the first
step of the cooley tukey algorithm which performs d/L FFT’s of size L between the blocks (and
multiplies them by twiddle factors). In the second step, instead of computing FFT’s inside each
block, each coefficient is computed directly, by summation, inside it’s block. These two steps require
(d/L) · L log(L) and kd/L operations respectively. By choosing k/ log(k) ≤ L ≤ k we achieve a
running time of O(d log(k)).

8 Future work

• Lower bounds. A lower on the running time of applying a random matrix with a JL property
on a vector will be extremely interesting. Any nontrivial (superlinear) bound for the case
k = dΩ(1) will imply a lower bound on the time to compute the Fourier transform, because
the bottleneck of our constructions is a Fourier transform.

• Going beyond k = d1/2−δ. As part of our work in progress, we are trying to push the result
to higher values of the target dimension k (the goal is a running time of O(d log d)). We
conjecture that this is possible for k = d1−δ, and have partial results in this direction. A
more ambitious goal is k = Ω(d).

9 Acknowledgements

We thank Tali Kaufman, Bernard Chazelle and Mark W. Tygert for helpful discussions.

10

References

[1] N. Ailon and B. Chazelle. Approximate nearest neighbors and the fast Johnson-Lindenstrauss
transform. In Proceedings of the 38st Annual Symposium on the Theory of Compututing
(STOC), pages 557–563, Seattle, WA, 2006.

[2] N. Alon. Problems and results in extremal combinatorics–I. Discrete Mathematics, 273(1-
3):31–53, 2003.

[3] R. I. Arriaga and S. Vempala. An algorithmic theory of learning: Robust concepts and random
projection. In FOCS ’99: Proceedings of the 40th Annual Symposium on Foundations of
Computer Science, page 616, Washington, DC, USA, 1999. IEEE Computer Society.

[4] S. Artstein-Avidan and V. Milman. Logarithmic reduction of the level of randomness in some
probabilistic geometric constructions. SIAM Journal on Computing, 1(34):67–88, 2004.

[5] J. Bergh and J. Lofstrom. Interpolation Spaces. Springer-Verlag, 1976.

[6] P. Drineas and R. Kannan. Fast monte-carlo algorithms for approximate matrix multiplication.
In IEEE Symposium on Foundations of Computer Science, pages 452–459, 2001.

[7] P. Drineas, R. Kannan, and M. Mahoney. Fast monte carlo algorithms for matrices ii: Com-
puting a low-rank approximation to a matrix, 2004.

[8] P. Drineas, R. Kannan, and M. Mahoney. Fast monte carlo algorithms for matrices iii: Com-
puting a compressed approximate matrix decomposition, 2004.

[9] P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the sphericity of some
graphs. Journal of Combinatorial Theory Series A, 44:355–362, 1987.

[10] A. M. Frieze, R. Kannan, and S. Vempala. Fast monte-carlo algorithms for finding low-rank
approximations. In IEEE Symposium on Foundations of Computer Science, pages 370–378,
1998.

[11] S. Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proceedings of the
42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 94–103,
Las Vegas, Nevada, USA, 2001.

[12] C. S. Hermann König and N. T. Jaegermann. Projection constants of symmetric spaces and
variants of khintchine’s inequality. J. Reine Angew. Math, 511:1–42, 1999.

[13] P. Indyk. On approximate nearest neighbors in non-Euclidean spaces. In Proceedings of the
39th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 148–155,
1998.

[14] P. Indyk. Uncertainty principles, extractors, and explicit embeddings of l2 into l1. In Proceed-
ings of the 39th Annual ACM Symposium on the Theory of Computing, 2007.

[15] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing
(STOC), pages 604–613, 1998.

11

[16] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.
Contemporary Mathematics, 26:189–206, 1984.

[17] S. Khot. Hardness of approximating thee shortest vector problem in lattices. In Proceedings
of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2004.

[18] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neighbor
in high dimensional spaces. SIAM Journal on Computing, 30(2):457–474, 2000.

[19] M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperimetry and Processes.
Springer-Verlag, 1991.

[20] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2(4):285–318, 1988.

[21] F. MacWilliams and N. Sloane. The Theory of Error Correcting Codes. North-Holland, 1983.

[22] J. Matousek. On variants of the Johnson-Lindenstrauss lemma. Private communication, 2006.

[23] A. A. Razborov. Expander codes and somewhat Euclidean sections in `n
1 . ECCC, 2007.

[24] T. Sarlós. Improved approximation algorithms for large matrices via random projections.
In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), Berkeley, CA, 2006.

[25] M. Sudan. Essential coding theory (class notes).

[26] S. Vempala. The Random Projection Method. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. 2004.

[27] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert. A fast randomized algorithm for the
approximation of matrices. Yale Computer Science Technical Reports, YALE/DCS/TR1380,
2007.

A Reducing the running time to O(d log k) for k ≤ d1/2−δ

Recall the construction in Section 5: δ > 0 is an arbitrarily small constant, we assume that
k ≤ d1/2−δ, that kδ is an integer and that β = fBCH(k)kδ divides d (all these requirements can be
easily satisfied by slightly reducing δ and at most doubling d). The matrix B is of size k × d, and
was defined as follows:

B =
(
Bk Bk · · · Bk

)
,

where Bk is the k × fBCH(k) code matrix from Lemma 4.1. Let B̂ denote kδ copies of Bk, side
by side. So B̂ is of size k × β and B consists of d/β copies of B̂. As in Section 5 we start our
construction by studying the distribution of the `2 estimator Y = ‖BDx‖2, where D is our usual
random ±1 diagonal matrix. Going back to (2) (recall that M is the matrix whose i’th column

12

M (i) is xiB
(i)), we recompute the deviation σ:

σ = ‖M‖2→2 = sup
y∈`k

2
‖y‖=1

‖yT M‖2

= sup

(
d∑

i=1

x2
i (y

T B(i))2
)1/2

= sup

d/β∑

j=1

∑

i∈Ij

x2
i (y

T B(i))2

1/2

,

where Ij is the j’th block of β consecutive integers between 1 and d. Applying Cauchy-Schwartz,
we get

σ ≤ sup
y∈`k

2
‖y‖=1

d/β∑

j=1

‖xIj‖2
4‖yT B̂‖2

4

1/2

=
(
sup ‖yT B̂‖4

)
‖x‖(4,2) = ‖B̂T ‖2→4‖x‖(4,2) ,

(12)

where ‖ · ‖(p1,p2) is defined by

‖x‖(p1,p2) =

d/β∑

j=1

‖xIj‖p2
p1

1/p2

and xIj ∈ `β
p1 is the projection of x onto the set of coordinates Ij . Our goal, as in Section 5, is

to get σ = O(k−1/2). By the properties of dual BCH code matrices (Lemma 5.2), we readily have
that ‖B̂T ‖2→4 = O((fBCH(k)kδ)1/4k−1/2) which is O(kδ/4) by our construction. We now need to
somehow ”ensure” that ‖x‖(4,2) = O(k−1/2−δ/4) in order to complete the construction.

As before, we cannot directly control x (and its norms), but we can multiply it by random
orthogonal matrices without losing `2 information. Let H ′ be a block diagonal d × d matrix with
d/β blocks of the Walsh-Hadamard matrix Hβ:

H ′ =

Hβ

Hβ

. . .
Hβ

 .

Let D′ be a random diagonal d × d matrix over ±1. The random matrix H ′D′ is orthogonal. We
study the random variable X ′ = ‖H ′D′x‖(4,2). Let M ′ be the matrix with the i’th column M ′(i)

defined as xiH
′(i). We notice that X ′ is the norm of the Rademacher random variable in `d

(4,2)
corresponding to M .

Remark: The results on Rademacher random variables presented in Section 3 apply to ”non-
standard” norms such as ‖·‖(p1,p2). The dual of ‖·‖(p1,p2) is ‖·‖(q1,q2), where q1, q2 are the usual dual

13

norm indices of p1, p2, respectively. It is an exercise to check that ‖x‖(p1,p2) = sup‖y‖(q1,q2)=1 xT y.
We compute the deviation σ′ and a median µ′ of X ′ (as we did in (4)):

σ′ = ‖M‖2→(4,2) = ‖MT ‖(4/3,2)→2

= sup
y∈`k

(4/3,2)
‖y‖=1

(∑

i

x2
i (y

T H(i))2
)1/2

= sup

d/β∑

j=1

∑

i∈Ij

x2
i (y

T H ′(i))2

1/2

≤ sup

d/β∑

j=1

‖xIj‖2
4‖yT

Ij
Hβ‖2

4

1/2

≤ sup

d/β∑

j=1

‖xIj‖2
4‖yIj‖2

4/3‖HT
β ‖2

4/3→4

1/2

= ‖Hβ‖4/3→4 sup

d/β∑

j=1

‖xIj‖2
4‖yIj‖2

4/3

1/2

,

where the first inequality is Cauchy-Schwartz. By the inequality (
∑

j Aj)1/2 ≤ ∑
j A

1/2
j holding for

all nonnegative A1, A2, . . . , we get

σ′ ≤ ‖Hβ‖4/3→4 sup
y∈`k

(4/3,2)
‖y‖=1

d/β∑

j=1

‖xIj‖4‖yIj‖4/3 ≤ ‖Hβ‖4/3→4‖x‖(4,2) .

(The rightmost inequality is from the fact that
∑d/β

j=1 ‖yIj‖2
4/3 = 1 and the definition of ‖x‖(4,2).)

By Hausdorff-Young, ‖Hβ‖4/3→4 ≤ β−1/4 = O(k−1/2−δ/4), hence σ′ = O(k−1/2−δ/4‖x‖(4,2)). Any
median µ′ of X ′ is O(k−1/2−δ/4) (details omitted). Applying Theorem 3.3, we get that for all t ≥ 0,

Pr[X ′ > µ′ + t] ≤ 4e−t2/(8σ′2) ≤ ĉ1 exp{−ĉ2t
2k1+δ/2/‖x‖2

(4,2)} ,

for some global ĉ1, ĉ2 > 0. Setting t = Θ(‖x‖(4,2)k
−δ/4), we get that

Pr[‖H ′D′x‖(4,2) > µ′ + t] = O(e−k) .

Similarly to the arguments leading to Lemma 5.4, and with possible readjustment of the parameter
δ, we get using a union bound

Lemma A.1 [`(4,2) reduction for k < d1/2−δ] Let H ′, D′ be as above, and let Φ′ = H ′D′. Define
Φ′(r) to be a composition of r i.i.d. matrices, each drawn from the same distribution as Φ′. Then
With probability 1−O(e−k)

‖Φ′(r)x‖(4,2) = O(k−1/2−δ/4)

for r = d1/2δe.

14

Combining the above, the random transformation A = BDΦ′(r) has the JL Euclidean property
for k < d1/2−δ, and can be applied to a vector in time O(d log k), as required. Indeed, multiplying
by Φ′ is done by doing a Walsh transform on d/β blocks of size β each, resulting in time O(d log k).
Clearly the number of random bits used in choosing A is O(d).

15

